
SMT models: Word-Based Models. Phrase-Based Models. Decoding. 

 

1. Word-Based Models 

 

In word-based translation, the fundamental unit of translation is a word in some natural 

language. Typically, the number of words in translated sentences are different, because of 

compound words, morphology, and idioms. The ratio of the lengths of sequences of translated 

words is called fertility, which tells how many foreign words each native word produces. 

Necessarily it is assumed by information theory that each covers the same concept. In practice this 

is not really true. For example, the English word corner can be translated in Spanish by either 

rincón or esquina, depending on whether it is to mean its internal or external angle. 

Simple word-based translation cannot translate between languages with different fertility. 

Word-based translation systems can relatively simply be made to cope with high fertility, such that 

they could map a single word to multiple words, but not the other way about. For example, if we 

were translating from English to French, each word in English could produce any number of 

French words— sometimes none at all. But there's no way to group two English words producing 

a single French word. 

An example of a word-based translation system is the freely available GIZA++ package 

(GPLed), which includes the training program for IBM models and HMM model and Model 6. 

The word-based translation is not widely used today; phrase-based systems are more 

common. Most phrase-based system are still using GIZA++ to align the corpus. The alignments 

are used to extract phrases or deduce syntax rules. And matching words in bitext is still a problem 

actively discussed in the community. Because of the predominance of GIZA++, there are now 

several distributed implementations of it online. [1] 

 

f – a foreign language, e – English 

 
1.1 Alignment function 

Mapping an English target word at position j to a German source word at position i with a 

function a: j → i. Function a must be fully defined on the English (target) side. The reason for this 

is the noisy channel model, where the output sentence is the code that gets transmitted and 

distorted, so we must account for every e. [2] 

 

 



 
 

 
 

1.2 Basics 

Take now a simplified look at a parallel corpus (parallelism on sentence level) with given 

alignments and imaging having observed the following alignments possibilities for the word Haus: 

 

Translation of Haus Count 

house 

building 

home 

household 

shell 

8,000 

1,600 

200 

150 

50 

total 10,000 

 

We want to estimate the lexical translation probabilities from corpus statistics, i.e. the 

probability of foreign word f being translated as English translation e: 

𝑝𝑓 ∶ 𝑒 → 𝑝𝑓(𝑒). 

It should be a probability function with usual properties of a probability distribution: 0 ≤
𝑝𝑓(𝑒) ≤ 1, ∑ 𝑝𝑓(𝑒)𝑒 = 1, ∀𝑓. 

 
1.2.1 Maximum Likelihood Estimation 

How do we estimate 𝑝𝑓(𝑒) for e = house and f = Haus? 

𝑝𝐻𝑎𝑢𝑠(ℎ𝑜𝑢𝑠𝑒) ≡ 𝑝(ℎ𝑜𝑢𝑠𝑒|𝐻𝑎𝑢𝑠) =
𝑐𝑜𝑢𝑛𝑡(𝐻𝑎𝑢𝑠 → ℎ𝑜𝑢𝑠𝑒)

𝑐𝑜𝑢𝑛𝑡(𝐻𝑎𝑢𝑠 → . )
=
8, 000

10, 000
= 0.8 

 

For all translations of Haus, we get 

𝑝𝑓(𝑒) =

{
 
 

 
 
0.8                  𝑖𝑓 𝑒 = ℎ𝑜𝑢𝑠𝑒,
0.16            𝑖𝑓 𝑒 = 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔,

0.02                  𝑖𝑓 𝑒 = ℎ𝑜𝑚𝑒,

0.015        𝑖𝑓 𝑒 = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑,
0.005                  𝑖𝑓 𝑒 = 𝑠ℎ𝑒𝑙𝑙.

 



Estimation based on ratios of counts is called ‘maximum likelihood estimation’. [2] 

 
1.3 IBM Model 1 

IBM Models in general: 

Generative models, which break up the translation process into smaller steps and achieve 

better statistics with simpler models. 

 

IBM Model 1 uses only lexical translation. Ignores any position information (order), 

resulting in translating multisets of words into multisets of words. 

 

Translation probability 

• for a foreign sentence 𝑓 = (𝑓1, … , 𝑓𝑙𝑓) of length 𝑙𝑓  

• to an English sentence 𝑒 = (𝑒1, … , 𝑒𝑙𝑒) of length 𝑙𝑒 

• translation probability t(e|f) ≡ p(e|f) (t-tables) 

• with an alignment of each English word ej to a foreign word fi according to the alignment 

function a : j → i 

𝑝(𝑒, 𝑎|𝑓) =
𝜖

(𝑙𝑓 + 1)𝑙𝑒
 ∏ 𝑡(𝑒𝑗 |𝑓𝑎(𝑗))

𝑙𝑒

𝑗=1

                                        (1) 

∏ 𝑡(𝑒𝑗 |𝑓𝑎(𝑗))
𝑙𝑒
𝑗=1  is the product over the lexical translation probabilities for all 𝑙𝑒 generated 

target words. We use the product, since we assume that the lexical translation probabilities are 

independant. 

𝜖 is a normalization constant, s.t. ∑ 𝑝(𝑒, 𝑎|𝑓) = 1𝑒,𝑎 . or a distribution of lengths 𝜖(𝑙𝑒|𝑙𝑓). 

(𝑙𝑓 + 1)
𝑙𝑒 is the number of alignments of 𝑙𝑓 +𝑁𝑈𝐿𝐿  input words with 𝑙𝑒  output words: the 

uniform probabilities over alignments. 

Can also be defined the reverse direction: 𝑝(𝑓, 𝑎|𝑒) (original IBM1). 
 

Generative story for IBM translation Model 1: 

1. pick a length 𝑙𝑒 for e according to distribution 𝜖(𝑙𝑒|𝑙𝑓). 

2. for each 𝑗 = 1,… , 𝑙𝑒choose avalue for aj from 0, 1,… , 𝑙𝑒according to uniform distribution. 

3. for each 𝑗 = 1,… , 𝑙𝑒 choose a output word ej according to 𝑡(𝑒𝑗 |𝑓𝑎𝑗). [2] 

 

 
 

𝑝(𝑒, 𝑎|𝑓) =
𝜖

54
× 𝑡(𝑡ℎ𝑒|𝑑𝑎𝑠) × 𝑡(ℎ𝑜𝑢𝑠𝑒|𝐻𝑎𝑢𝑠) × 𝑡(𝑖𝑠|𝑖𝑠𝑡) × 𝑡(𝑠𝑚𝑎𝑙𝑙|𝑘𝑙𝑒𝑖𝑛)

=
𝜖

54
×0.7 × 0.8 × 0.8 × 0.4 = 0.0029𝜖 

 
1.4 Learning Lexical Translation Models 



We would like to estimate the lexical translation probabilities t(e|f) (and t(f|e)) from a corpus 

of parallel translations. 

Problem: We don’t have the alignments, only parallel sentences (i.e., sentences in source 

language, paired with sentences that are translations in target language). 

 

Chicken-and-egg problem caused by incomplete data: 

 

machine translation machine learning 

If we had alignments, we could estimate t(e|f) 

by relative frequency count. 

If we had complete data, we could estimate the 

model by Maximum Likelihood Estimation. 

If we had the model t(e|f), we could assign 

most probable alignments. 

If we had the model, we could complete our 

data by most probable predictions. 

 
1.4.1 EM Algorithm 

EM (Expectation Maximization) in a nutshell: 

1. Initialize model parameters, e.g., uniform. 

2. Assign probabilities to missing data. 

3. Estimate model parameters from completed/manufactured/expected data. 

4. Iterate step 2 - 3 until convergence. [2] 

 

Initial step: 

All alignments are equally likely. The Model learns that, e.g., “la” is often aligned with “the”. 

 

 
 

After one iteration: 

Alignments, e.g., between “la” and “the” are more likely. 

 

 
 

After another iteration: 

It becomes apparent that alignments, e.g., between “fleur” and “flower” are more likely 

(pigeon hole principle). 

 



 
 

Convergence: 

Inherent hidden structure revealed by EM. 

 

 
 

p(la|the) = 0.453 

p(le|the) = 0.334 

p(maison|house) = 0.876 

p(bleue|blue) = 0.563 

 
 

2. Phrase-Based Models 

 

In phrase-based translation, the aim is to reduce the restrictions of word-based translation by 

translating whole sequences of words, where the lengths may differ. The sequences of words are 

called blocks or phrases, but typically are not linguistic phrases, but phrasemes found using 

statistical methods from corpora. It has been shown that restricting the phrases to linguistic phrases 

(syntactically motivated groups of words, see syntactic categories) decreases the quality of 

translation. 

The chosen phrases are further mapped one-to-one based on a phrase translation table and 

may be reordered. This table can be learnt based on word-alignment, or directly from a parallel 

corpus. The second model is trained using the expectation maximization algorithm, similarly to 

the word-based IBM model. [1] 

 

Word-Based Models translate words as atomic units. 

Phrase-Based Models translate phrases as atomic units. 

Advantages: 

– many-to-many translation can handle non-compositional phrases 

– use of local context in translation 

– the more data, the longer phrases can be learned 

”Standard Model”, used by Google Translate and others. 

 

 



 

• Foreign input is segmented in phrases 

• Each phrase is translated into English 

• Phrases are reordered 

Phrase Translation Table: 

• Main knowledge source: table with phrase translations and their probabilities 

• Example: phrase translations for natuerlich 

 

Translation Probability 𝜑(𝑒̅|𝑓̅) 
of course 0.5 

naturally 0.3 

of course , 0.15 

, of course , 0.05 

 

• Phrase translations for den Vorschlag learned from the Europarl corpus: 

 

English 𝜑(𝑒̅|𝑓̅) English 𝜑(𝑒̅|𝑓̅) 
the proposal 0.6227 the suggestions 0.0114 

’s proposal 0.1068 the proposed 0.0114 

a proposal 0.0341 the motion 0.0091 

the idea 0.0250 the idea of 0.0091 

this proposal 0.0227 the proposal , 0.0068 

proposal 0.0205 its proposal 0.0068 

of the proposal 0.0159 it 0.0068 

the proposals 0.0159 … … 

 

– lexical variation (proposal vs suggestions) 

– morphological variation (proposal vs proposals) 

– included function words (the, a, ...) 

– noise (it) 

 

Linguistic Phrases? 

• Model is not limited to linguistic phrases 

(noun phrases, verb phrases, prepositional phrases, ...) 

• Example non-linguistic phrase pair 

spass am → fun with the 

• Prior noun often helps with translation of preposition 

• Experiments show that limitation to linguistic phrases hurts quality 

 
Probabilistic Model 

• Bayes rule 

𝑒𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒  𝑝(𝑒|𝑓) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒  𝑝(𝑓|𝑒) 𝑝𝐿𝑀(𝑒) 
 

– translation model 𝑝(𝑒|𝑓) 
– language model 𝑝𝐿𝑀(𝑒) 
 

• Decomposition of the translation model 

𝑝(𝑓1̅
𝐼|𝑒1̅

𝐼) =∏𝜙(𝑓𝑖̅ |𝑒𝑖̅)

𝐼

𝑖=1

 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1) 

 

– phrase translation probability φ 



– reordering probability d 

 
Distance-Based Reordering 

 

 
 

phrase translates movement distance 

1 1-3 start at beginning 0 

2 6 skip over 4-5 +2 

3 4-5 move back over 4-6 -3 

4 7 skip over 6 +1 

 

Scoring function: d(x) = α |x| — exponential with distance. 

 
Learning a Phrase Translation Table 

• Task: learn the model from a parallel corpus 

• Three stages: 

– word alignment: using IBM models or other method 

– extraction of phrase pairs 

– scoring phrase pairs  

 

Word Alignment 

 

 



 

Extracting Phrase Pairs 

 

 
 

Extract phrase pair consistent with word alignment: assumes that / geht davon aus , dass. 

 

Consistent 

 

 
 

All words of the phrase pair have to align to each other. 

 

 



 

Phrase pair (𝑒̅, 𝑓̅) consistent with an alignment A, if all words f1, …, fn in 𝑓̅ that have 

alignment points in A have these with words e1, …, en in 𝑒̅ and vice versa: 

(𝑒̅, 𝑓̅) 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡  𝑤𝑖𝑡ℎ 𝐴 ⟺ 

∀𝑒𝑖 ∈ 𝑒̅ ∶ (𝑒𝑖 , 𝑓𝑖) ∈ 𝐴 → 𝑓𝑖 ∈ 𝑓 ̅

𝐴𝑁𝐷 ∀𝑓𝑖 ∈ 𝑓̅ ∶  (𝑒𝑖 , 𝑓𝑖) ∈ 𝐴 → 𝑒𝑖 ∈ 𝑒̅  

𝐴𝑁𝐷 ∃𝑒𝑖 ∈ 𝑒̅, 𝑓𝑖 ∈ 𝑓̅ ∶  (𝑒𝑖 , 𝑓𝑖) ∈ 𝐴 
 

Phrase Pair Extraction 

 

 
 

Smallest phrase pairs: 

michael — michael 

assumes — geht davon aus / geht davon aus , 

that — dass / , dass 

he — er 

will stay — bleibt 

in the — im 

house — haus 

unaligned words (here: German comma) lead to multiple translations. 

 

Larger Phrase Pairs 

 



 
 

michael assumes — michael geht davon aus / michael geht davon aus , 

assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er 

that he — dass er / , dass er ; in the house — im haus 

michael assumes that — michael geht davon aus , dass 

michael assumes that he — michael geht davon aus , dass er 

michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt 

assumes that he will stay in the house — geht davon aus , dass er im haus bleibt 

that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt , 

he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt 

 

Scoring Phrase Translations 

• Phrase pair extraction: collect all phrase pairs from the data 

• Phrase pair scoring: assign probabilities to phrase translations 

• Score by relative frequency: 

𝜙(𝑓̅|𝑒̅) =
𝑐𝑜𝑢𝑛𝑡(𝑒̅,  𝑓̅)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑒̅, 𝑓𝑖̅)𝑓𝑖̅

 

 

Size of the Phrase Table 

• Phrase translation table typically bigger than corpus 

... even with limits on phrase lengths (e.g., max 7 words) 

→ Too big to store in memory? 

• Solution for training 

– extract to disk, sort, construct for one source phrase at a time 

• Solutions for decoding 

– on-disk data structures with index for quick look-ups 

– suffix arrays to create phrase pairs on demand 

 
Weighted Model 

• Described standard model consists of three sub-models 

– phrase translation model 𝜙(𝑓̅|𝑒̅) 
– reordering model d 

– language model 𝑝𝐿𝑀(𝑒) 



𝑒𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∏𝜙(𝑓𝑖̅ |𝑒𝑖̅)

𝐼

𝑖=1

 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1)∏𝑝𝐿𝑀(𝑒𝑖 |𝑒1… 𝑒𝑖−1)

|𝑒|

𝑖=1

 

 

• Some sub-models may be more important than others 

• Add weights 𝜆𝜙 , 𝜆𝑑, 𝜆𝐿𝑀   

𝑒𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∏𝜙(𝑓𝑖̅ |𝑒𝑖̅)
𝜆𝜙

𝐼

𝑖=1

 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1)
𝜆𝑑∏𝑝𝐿𝑀(𝑒𝑖 |𝑒1…𝑒𝑖−1)

𝜆𝐿𝑀

|𝑒|

𝑖=1

 

 
Log-Linear Model 

• Such a weighted model is a log-linear model: 

𝑝(𝑥) = 𝑒𝑥𝑝∑𝜆𝑖ℎ𝑖(𝑥)

𝑛

𝑖=1

 

 

• Our feature functions 

– number of feature function n = 3 

– random variable x = (e, f, start, end) 

– feature function ℎ1 = 𝑙𝑜𝑔𝜙 

– feature function ℎ2 = 𝑙𝑜𝑔𝑑 

– feature function ℎ3 = 𝑙𝑜𝑔𝑝𝐿𝑀  

 
Weighted Model as Log-Linear Model 

 

𝑝(𝑒, 𝑎|𝑓) = exp (𝜆𝜙∑log𝜙 (𝑓𝑖̅|𝑒𝑖̅)

𝐼

𝑖=1

+ 𝜆𝑑∑log 𝑑(𝑎𝑖 − 𝑏𝑖−1 − 1)

𝐼

𝑖=1

+ 𝜆𝐿𝑀∑log 𝑝𝐿𝑀(𝑒𝑖 |𝑒1…𝑒𝑖−1))

|𝑒|

𝑖=1

 

 
Lexicalized Reordering 

 

 
 

• Distance-based reordering model is weak 

→ learn reordering preference for each phrase pair 

• Three orientations types: (m) monotone, (s) swap, (d) discontinuous 

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∈ {𝑚, 𝑠, 𝑑} 
𝑝𝑜(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛|𝑓̅, 𝑒̅) 



 

Learning Lexicalized Reordering 

 

 
 

• Collect orientation information during phrase pair extraction 

– if word alignment point to the top left exists → monotone 

– if a word alignment point to the top right exists→ swap 

– if neither a word alignment point to top left nor to the top right exists 

→ neither monotone nor swap → discontinuous 

 

• Estimation by relative frequency 

𝑝𝑂(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) =
∑ ∑ 𝑐𝑜𝑢𝑛𝑡(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑒̅, 𝑓̅)𝑒̅𝑓̅

∑ ∑ ∑ 𝑐𝑜𝑢𝑛𝑡(𝑜, 𝑒̅, 𝑓̅)𝑒̅𝑓̅𝑂

 

 

• Smoothing with unlexicalized orientation model p(orientation) to avoid zero probabilities 

for unseen orientations 

𝑝𝑂(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛|𝑓̅, 𝑒̅) =
𝜎 𝑝(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) + 𝑐𝑜𝑢𝑛𝑡(𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑒̅, 𝑓̅)

𝜎 + ∑ 𝑐𝑜𝑢𝑛𝑡(𝑜, 𝑒̅, 𝑓̅)𝑂

 

 
EM Training of the Phrase Model 

• We presented a heuristic set-up to build phrase translation table 

(word alignment, phrase extraction, phrase scoring) 

• Alternative: align phrase pairs directly with EM algorithm 

– initialization: uniform model, all 𝜙(𝑒̅|𝑓̅) are the same 

– expectation step: 

∗ estimate likelihood of all possible phrase alignments for all sentence pairs 

– maximization step: 

∗ collect counts for phrase pairs (𝑒̅|𝑓̅), weighted by alignment probability 

∗ update phrase translation probabilties 𝑝(𝑒̅|𝑓̅) 
• However: method easily overfits 

(learns very large phrase pairs, spanning entire sentences). [3] 

 

 

3. Decoding 

 

• We have a mathematical model for translation 

𝑝(𝑒̅|𝑓̅) 
 

• Task of decoding: find the translation 𝑒𝑏𝑒𝑠𝑡  with highest probability 

𝑒𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑝(𝑒|𝑓) 
 

• Two types of error 

– the most probable translation is bad → fix the model 



– search does not find the most probably translation → fix the search 

• Decoding is evaluated by search error, not quality of translations 

(although these are often correlated) 

 

Translation Process 

• Task: translate this sentence from German into English 

 

 
 

• Pick phrase in input, translate 

– it is allowed to pick words out of sequence reordering 

– phrases may have multiple words: many-to-many translation. 

 

 
 

 
 

 
 

 
 

Computing Translation Probability 

• Probabilistic model for phrase-based translation: 

𝑒𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∏𝜙(𝑓𝑖̅ |𝑒𝑖̅)

𝐼

𝑖=1

 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1) 𝑝𝐿𝑀(𝑒) 

 

• Score is computed incrementally for each partial hypothesis 

• Components 

Phrase translation Picking phrase 𝑓̅ to be translated as a phrase 𝑒𝑖̅  

→ look up score 𝜙(𝑓𝑖̅ |𝑒𝑖̅) from phrase translation table 

Reordering Previous phrase ended in 𝑒𝑛𝑑𝑖−1, current phrase starts at 𝑠𝑡𝑎𝑟𝑡𝑖 



→ compute 𝑑(𝑠𝑡𝑎𝑟𝑡𝑖 − 𝑒𝑛𝑑𝑖−1 − 1)  
Language model For n-gram model, need to keep track of last n − 1 words 

→ compute score 𝑝𝐿𝑀(𝑤𝑖 |𝑤𝑖−(𝑛−1), … , 𝑤𝑖−1) for added words 𝑤𝑖 
 

Translation Options 

 

 
 

• Many translation options to choose from 

– in Europarl phrase table: 2727 matching phrase pairs for this sentence 

– by pruning to the top 20 per phrase, 202 translation options remain 

 

 
 

• The machine translation decoder does not know the right answer 

– picking the right translation options 

– arranging them in the right order 

→ Search problem solved by heuristic beam search. 

 

Decoding: Precompute Translation Options 

 



 
consult phrase translation table for all input phrases 

 

 
initial hypothesis: no input words covered, no output produced 

 

 
pick any translation option, create new hypothesis 

 

 
create hypotheses for all other translation options 

 

 
also create hypotheses from created partial hypothesis 

 



 
backtrack from highest scoring complete hypothesis 

 

Computational Complexity 

• The suggested process creates exponential number of hypothesis 

• Machine translation decoding is NP-complete 

• Reduction of search space: 

– recombination (risk-free) 

– pruning (risky) 

 

Recombination 

• Two hypothesis paths lead to two matching hypotheses 

– same number of foreign words translated 

– same English words in the output 

– different scores 

 

 
 

• Worse hypothesis is dropped 

 

 
 

• Two hypothesis paths lead to hypotheses indistinguishable in subsequent search 

– same number of foreign words translated 

– same last two English words in output (assuming trigram language model) 

– same last foreign word translated 

– different scores 

 



 
 

• Worse hypothesis is dropped 

 

 
 

Restrictions on Recombination 

• Translation model: Phrase translation independent from each other 

→ no restriction to hypothesis recombination 

• Language model: Last n−1 words used as history in n-gram language model 

→ recombined hypotheses must match in their last n − 1 words 

• Reordering model: Distance-based reordering model based on distance to end position of 

previous input phrase 

→ recombined hypotheses must have that same end position 

• Other feature function may introduce additional restrictions 

 

Pruning 

• Recombination reduces search space, but not enough 

(we still have a NP complete problem on our hands) 

• Pruning: remove bad hypotheses early 

– put comparable hypothesis into stacks 

(hypotheses that have translated same number of input words) 

– limit number of hypotheses in each stack 

 

Stacks 

 



 
 

• Hypothesis expansion in a stack decoder 

– translation option is applied to hypothesis 

– new hypothesis is dropped into a stack further down 

 

Stack Decoding Algorithm 

1: place empty hypothesis into stack 0 

2: for all stacks 0...n − 1 do 

3:    for all hypotheses in stack do 

4:       for all translation options do 

5:          if applicable then 

6:              create new hypothesis 

7:              place in stack 

8:              recombine with existing hypothesis if possible 

9:              prune stack if too big 

10:          end if 

11:       end for 

12:    end for 

13: end for 

 

Pruning 

• Pruning strategies 

– histogram pruning: keep at most k hypotheses in each stack 

– stack pruning: keep hypothesis with score α × best score (α < 1) 

• Computational time complexity of decoding with histogram pruning 

O(max stack size × translation options × sentence length) 

• Number of translation options is linear with sentence length, hence: 

O(max stack size × sentence length2) 

• Quadratic complexity 

 

Reordering Limits 

• Limiting reordering to maximum reordering distance 

• Typical reordering distance 5–8 words 

– depending on language pair 



– larger reordering limit hurts translation quality 

• Reduces complexity to linear 

O(max stack size × sentence length) 

• Speed / quality trade-off by setting maximum stack size 

 

Other Decoding Algorithms 

• A* search 

• Greedy hill-climbing 

• Using finite state transducers (standard toolkits) 

 

Greedy Hill-Climbing 

• Create one complete hypothesis with depth-first search (or other means) 

• Search for better hypotheses by applying change operators 

– change the translation of a word or phrase 

– combine the translation of two words into a phrase 

– split up the translation of a phrase into two smaller phrase translations 

– move parts of the output into a different position 

– swap parts of the output with the output at a different part of the sentence 

• Terminates if no operator application produces a better translation. [4] 

 

 

References 

 

1. Statistical machine translation. URL: 

https://en.wikipedia.org/wiki/Statistical_machine_translation#:~:text=Statistical%20machine%2

0translation%20(SMT)%20is,analysis%20of%20bilingual%20text%20corpora. 

2. Statistical Machine Translation. Word-based models. Available: 

http://statmt.org/book/slides/04-word-based-models.pdf 

3. Statistical Machine Translation. Phrase-based models. Available: 

http://www.statmt.org/book/slides/05-phrase-based-models.pdf 

4. Statistical Machine Translation. Decoding. Available: http://statmt.org/book/slides/06-

decoding.pdf 

 

 

https://en.wikipedia.org/wiki/Statistical_machine_translation#:~:text=Statistical%20machine%20translation%20(SMT)%20is,analysis%20of%20bilingual%20text%20corpora
https://en.wikipedia.org/wiki/Statistical_machine_translation#:~:text=Statistical%20machine%20translation%20(SMT)%20is,analysis%20of%20bilingual%20text%20corpora
http://statmt.org/book/slides/04-word-based-models.pdf
http://www.statmt.org/book/slides/05-phrase-based-models.pdf
http://statmt.org/book/slides/06-decoding.pdf
http://statmt.org/book/slides/06-decoding.pdf

